

Prosecká 811/76a 190 00 Prague Czech Republic eota@tzus.cz

European Technical Assessment

ETA 23/0707 of 30/11/2023

Technical Assessment Body issuing the ETA: Technical and Test Institute for Construction Prague									
Trade name of the construction product	R-HLX								
Product family to which the construction product belongs	Product area code: 33 Concrete screw for use in cracked and uncracked concrete								
Manufacturer	Rawlplug S.A. UI. Kwidzyńska 6 51-416 Wrocław Poland								
Manufacturing plant	Manufacturing Plant No 2								
This European Technical Assessment contains	10 pages including 8 Annexes which form an integral part of this assessment								
This European Technical Assessment is issued in accordance with regulation (EU) No 305/2011, on the basis of	EAD 330232-01-0601 Mechanical fasteners for use in concrete								

Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and should be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full (excepted the confidential Annex(es) referred to above). However, partial reproduction may be made, with the written consent of the issuing Technical Assessment Body - Technical and Test Institute for Construction Prague. Any partial reproduction has to be identified as such.

1. Technical description of the product

The R-HLX concrete screw in sizes of 10, 12 and 14 is made of carbon steel with coating.

The anchor is screwed into a drilled cylindrical hole. The special thread of the anchor cuts an internal thread into the member while setting. The anchorage is characterised by mechanical interlock in the special thread.

The installed anchor is shown in Annex A1.

2. Specification of the intended use in accordance with the applicable EAD

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The provisions made in this European Technical Assessment are based on an assumed working life of the anchor of 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the products in relation to the expected economically reasonable working life of the works.

3. Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance (static and quasi-static loading)	See Annex C 1 and C 2
Displacement	See Annex C 1 and C 2

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1 according to EN 13501-1
Resistance to fire	No performance assessed

4. Assessment and verification of constancy of performance (AVCP) system applied with reference to its legal base

According to the Decision 96/582/EC of the European Commission¹, the system 1 of assessment verification of constancy of performance (see Annex V to the Regulation (EU) No 305/2011) apply.

5. Technical details necessary for the implementation of the AVCP system, as provided in the applicable EAD

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Technical and Test Institute for Construction Prague.

Issued in Prague on 30.11.2023

By

Ing. Jiří Studnička, Ph.D. Head of the Technical Assessment Body

¹ Official Journal of the European Communities L 254 08.10.1996

Table A1 - Materials

Material Carbon steel; rupture elongation $A_5 \ge 12\%$ Galvanized zinc plating ($\ge 5 \mu m$), acc ISO 4042 or Zinc flake ($\ge 5 \mu m$), acc. ISO 10683

R-HLX – Types

R-HLX and HLX-SI – Marking

Marking: R-HLX Identifying mark of the producer D x L, where: D – screw size [mm], e. g. 10 L – length of a screw [mm], e. g. 100

HLX-SI-12x100-ZF head

R-HLX

Product description Materials Marking

Annex A 2

Table A2 - Dimensions					
Nominal diameter	d _{nom}	[mm]	10	12	14
Threaded outer diameter	d_{th}	[mm]	12,7	14,9	16,9
Core diameter	d _k	[mm]	9,3	11,5	13,3
Shaft diameter	ds	[mm]	9,8	11,95	13,85
Head sizes R-HLX-HF	Sw	[-]	SW15	SW17	SW21
Head sizes CS	Т	[-]	T50	T50	T50

Product description Dimensions Annex A 2

Specifications of intended use

Anchorages subject to:

• Static and quasi-static loads.

Base materials

- Cracked or uncracked concrete.
- Reinforced or unreinforced normal weight concrete of strength class C20/25 at minimum and C50/60 at maximum according EN 206:2013+A1:2016.

Use conditions (Environmental conditions)

• Structures subject to dry internal conditions.

Design:

- The anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- The anchorages are designed in accordance with the EN 1992-4:2018 and Technical Report TR 055, Edition February 2018.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e.g. positions of the fastener relative to reinforcement or to support, etc.).

Installation:

- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- Use of the anchor only as supplied by the manufacturer without exchanging any components of the anchor.
- Anchor installation in accordance with the manufacturer's specifications and drawings using the appropriate tools.
- Effective anchoring depth, edge distance and spacing not less than the specified values without minus tolerance.
- In case of aborted drill hole: new drilling at a minimum distance away of twice the depth of the aborted hole or smaller distance if the aborted drill hole is filled with high strength mortar and if under shear or oblique tension load it is not in the direction of load application.

R-	Н	LΧ

Intended use Specifications Annex B 1

Table B1	Table B1 - Installation parameters for standard embedment depth												
	Drill hole	Maximum	Nominal	Min. hole	Max. hole	Maximum	Minimum	Minimum	Minimum				
	diameter	cutting	embedment	depth	diameter in	installation	thickness of	spacing	edge				
Tupo		diameter	depth		fixture	torque	concrete		distance				
Type							member						
	d ₀	d _{cut,max}	h _{nom}	h. [mm]	df	T _{imp,max}	h _{min}	Smin	Cmin				
	[mm]	[mm]	[mm]		[mm]	[Nm]	[mm]	[mm]	[mm]				
R-HLX 10	10	10,45	85	95	14	1000	130	60	60				
R-HLX 12	12	12,45	100	110	16	1000	155	80	80				
R-HLX 14	14	14,45	115	125	18	1000	190	100	100				

Table B2 - Installation parameters for medium embedment depth

	Drill hole	Maximum	Nominal	Min. hole	Max. hole	Maximum	Minimum	Minimum	Minimum
	diameter	diameter cutting embedment		depth	diameter in	installation	thickness of	spacing	edge
Tuno		diameter	depth		fixture	torque	concrete		distance
туре							member		
	d ₀	d _{cut,max}	h _{nom}	h. [mm]	df	T _{imp,max}	h _{min}	Smin	Cmin
	[mm]	[mm]	[mm]		[mm]	[Nm]	[mm]	[mm]	[mm]
R-HLX 10	10	10,45	75	85	14	1000	120	60	60
R-HLX 12	12	12,45	80	90	16	1000	130	80	80
R-HLX 14	14	14,45	85	95	18	1000	130	100	100

Table B3 – Installation parameters for reduced embedment depth

	Drill hole	Maximum	Nominal	Min. hole	Max. hole	Maximum	Minimum	Minimum	Minimum
	diameter	cutting	embedment	depth	diameter in	installation	thickness of	spacing	edge
Tuno		diameter	depth		fixture	torque	concrete		distance
туре							member		
	d_0	d _{cut,max}	h _{nom}	h. [mm]	df	T _{imp,max}	h _{min}	Smin	Cmin
	[mm]	[mm]	[mm]		[mm]	[Nm]	[mm]	[mm]	[mm]
R-HLX 10	10	10,45	55	65	14	1000	100	60	60
R-HLX 12	12	12,45	60	70	16	1000	110	80	80
R-HLX 14	14	14,45	65	75	18	1000	110	100	100

R-HLX

Intended use

Installation parameters

Annex B 2

Size					10			12		14			
Nominal e	mbedment depth	h _{nom}	[mm]	55	75	85	60	80	100	65	85	115	
Steel failu	re		-	-	-	-	•		•	•	-	-	
Characteris	stic resistance	N _{Rk,s}	[kN]		54,3			83,1			111,1		
Partial safe	ety factor	γMs	[-]				•	1,5					
Pull-out fa	ilure		•										
Characteris	tic resistance d concrete C20/25	N Rk,p,ucr	[kN]	13,4 ¹⁾	22,3 ¹⁾	27,6 ¹⁾	15,4 ¹⁾	24,6 ¹⁾	35,2 ¹⁾	16,9 ¹⁾	26,4 1)	43,4 ¹⁾	
Characteris	tic resistance concrete C20/25	N _{Rk,p,cr}	[kN]	9,4 ¹⁾	15,6 ¹⁾	19,3 ¹⁾	10,7 ¹⁾	17,2 ¹⁾	24,6 ¹⁾	11,8 ¹⁾	18,5 ¹⁾	30,4 ¹⁾	
C25/30				1,10									
,	C3	C30/37			1,22								
Increasing factor C35/45		5/45 0/50 Ψ ^c	[-]	[-]									
	; C4 C4	5/55		1.41									
	C5	0/60		1.55									
Concrete o	cone and splitting	j failure						,					
Effective er	mbedment depth	h _{ef}	[mm]	42	59	68	46	63	80	49	66	92	
Factor for co	oncrete cone failure ed concrete	K _{ucr,N}	[-]		L	I	L	11,0	L	I	I		
Factor for co	oncrete cone failure concrete	kcr,N	[-]	7,7									
Robustness γ _{inst}		[-]	1,2	1,0	1,0	1,2	1,0	1,0	1,2	1,2	1,2		
Cassian	concrete cone fail	Jre S _{cr,N}	[mm]					3 • h _{ef}					
Spacing	splitting failure	Scr,sp	[mm]	120	180	200	140	200	240	150	200	280	
Edge	concrete cone fail	Jre C _{cr,N}	[mm]					1,5 • h _e	f				
distance	solitting failure	Corso	[mm]	60	90	100	70	100	120	75	100	140	

¹⁾ limited to $N^{0}_{Rk,c}$

Table C2 – Displacement under tension load

Size	10			12			14				
Nominal embedment depth	\mathbf{h}_{nom}	[mm]	55	75	85	60	80	100	65	85	115
Tension load in uncracked concrete	Ν	[kN]	7,03	15,03	19,28	8,02	17,92	30,52	10,41	21,63	38,86
Displacement	δνο	[mm]	0,4	0,4	0,6	0,4	0,4	0,6	0,4	0,6	0,7
	δn∞	[mm]	1,2	1,1	1,2	1,2	1,1	1,2	1,3	1,2	1,4
Tension load in cracked concrete	Ν	[kN]	4,55	9,05	13,62	6,60	10,25	22,56	7,60	14,30	28,41
Displacement	δ_{N0}	[mm]	0,4	0,4	0,5	0,5	0,5	0,7	0,6	0,7	0,7
	δ _{N∞}	[mm]	2,0	2,0	2,0	2,0	2,0	2,0	2,0	2,0	2,0

R-HLX	
Performances	Annex C 1
Characteristic resistance under tension load	
Displacement under tension load	

Size				10			12			14	
Nominal embedment depth	h _{nom}	[mm]	55	75	85	60	80	100	65	85	115
Steel failure without lever arm	<u>-</u>	-		-	-	-	-	-	-	-	
Characteristic resistance	V ⁰ Rk,s	[kN]		27,2			41,6			55,6	
Ductility factor	k 7	[-]	1,0								
Partial safety factor	γMs	[-]] 1,25								
Steel failure without lever arm	۱										
Characteristic resistance	M ⁰ Rk,s	[Nm]		75,8			143,4			221,7	
Partial safety factor	γMs	[-]	1,25								
Concrete cone pry-out failure											
Pry-out factor	k ₈	[-]	1,0	2,0	2,0	2,0	2,0	2,0	2,0	2,0	2,0
Installation safety factor	γinst	[-]					1,0				
Concrete edge failure											
Effective length of anchor	k	[mm]	55	75	85	60	80	100	65	85	115
Anchor diameter	dnom	[mm]		10			12			14	
Installation safety factor	γinst	[-]	1,0								

Table C4 – Displacement under shear load

Size			10	12	14
Shear load in cracked and uncracked concrete	V	[kN]	14,33	20,81	27,81
Displacement	δνο	[mm]	1,1	1,4	1,7
	δv∞	[mm]	1,7	2,1	2,6

R-	Η	LX

Performances Characteristic resistance under shear load Displacement under shear load